Coherent Presentations of Structure Monoids and the Higman-thompson Groups
نویسنده
چکیده
Structure monoids and groups are algebraic invariants of equational varieties. We show how to construct presentations of these objects from coherent categorifications of equational varieties, generalising several results of Dehornoy. We subsequently realise the higher Thompson groups Fn,1 and the Higman-Thompson groups Gn,1 as structure groups. We go on to obtain presentations of these groups via coherent categorifications of the varieties of higher-order associativity and of higher-order associativity and commutativity, respectively. These categorifications generalise Mac Lane’s pentagon and hexagon conditions for coherently associative and commutative bifunctors.
منابع مشابه
Monoid generalizations of the Richard Thompson groups
The groups Gk,1 of Richard Thompson and Graham Higman can be generalized in a natural way to monoids, that we call Mk,1, and to inverse monoids, called Invk,1; this is done by simply generalizing bijections to partial functions or partial injective functions. The monoids Mk,1 have connections with circuit complexity (studied in another paper). Here we prove that Mk,1 and Invk,1 are congruence-s...
متن کاملCoherence for rewriting 2-theories
The problems of the identity of proofs, equivalences of reductions in term rewriting systems and coherence in categories all share the common goal of describing the notion of equivalence generated by a two-dimensional congruence. This thesis provides a unifying setting for studying such structures, develops general tools for determining when a congruence identifies all reasonable parallel pairs...
متن کاملCohomological Finiteness Properties of the Brin-thompson-higman Groups 2v and 3v
We show that Brin’s generalisations 2V and 3V of the Thompson-Higman group V are of type FP∞. Our methods also give a new proof that both groups are finitely presented.
متن کاملFinite Factor Representations of Higman-Thompson groups
We prove that the only finite factor-representations of the HigmanThompson groups {Fn,r}, {Gn,r} are the regular representations and scalar representations arising from group abelianizations. As a corollary, we obtain that any measure-preserving ergodic action of a simple Higman-Thompson group must be essentially free. Finite factor representations of other classes of groups are also discussed.
متن کاملFactorizations of the Thompson-higman Groups, and Circuit Complexity
We consider the subgroup lpGk,1 of length preserving elements of the Thompson-Higman group Gk,1 and we show that all elements of Gk,1 have a unique lpGk,1 · Fk,1 factorization. This applies to the Thompson-Higman group Tk,1 as well. We show that lpGk,1 is a “diagonal” direct limit of finite symmetric groups, and that lpTk,1 is a k ∞ Prüfer group. We find an infinite generating set of lpGk,1 whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008